Unsupervised Video Shot Detection Using Clustering Ensemble with a Color Global Scale-Invariant Feature Transform Descriptor
نویسندگان
چکیده
Scale-invariant feature transform (SIFT) transforms a grayscale image into scale-invariant coordinates of local features that are invariant to image scale, rotation, and changing viewpoints. Because of its scale-invariant properties, SIFT has been successfully used for object recognition and content-based image retrieval. The biggest drawback of SIFT is that it uses only grayscale information and misses important visual information regarding color. In this paper, we present the development of a novel color feature extraction algorithm that addresses this problem, and we also propose a new clustering strategy using clustering ensembles for video shot detection. Based on Fibonacci lattice-quantization, we develop a novel color global scale-invariant feature transform (CGSIFT) for better description of color contents in video frames for video shot detection. CGSIFT first quantizes a color image, representing it with a small number of color indices, and then uses SIFT to extract features from the quantized color index image. We also develop a new space description method using small image regions to represent global color features as the second step of CGSIFT. Clustering ensembles focusing on knowledge reuse are then applied to obtain better clustering results than using single clustering methods for video shot detection. Evaluation of the proposed feature extraction algorithm and the new clustering strategy using clustering ensembles reveals very promising results for video shot detection.
منابع مشابه
DPML-Risk: An Efficient Algorithm for Image Registration
Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...
متن کاملEnsemble of Bayesian Filters for Loop Closure Detection
Loop closure detection for visual only simultaneous localization and mapping needs effective feature descriptors to obtain good performance results. Currently, the most widely used feature description is the global or local descriptor such as color histogram and Speeded Up Robust Features. The global features can be computed either by considering all points within a region, or only for those po...
متن کاملDetection of Copy-Move Forgery in Digital Images Using Scale Invariant Feature Transform Algorithm and the Spearman Relationship
Increased popularity of digital media and image editing software has led to the spread of multimedia content forgery for various purposes. Undoubtedly, law and forensic medicine experts require trustworthy and non-forged images to enforce rights. Copy-move forgery is the most common type of manipulation of digital images. Copy-move forgery is used to hide an area of the image or to repeat a por...
متن کاملSequence Matching Based Automatic Retake Detection Framework for Rushes Video
Automatically selecting the important content from rushes video is a challenging task due to the difficulty in eliminating raw data, such as useless content and redundant content. Redundancy elimination is difficult since repetitive segments, which are takes of the same scene, usually have different lengths and motion patterns. In this work, a new methodology is proposed to determine retakes in...
متن کاملVideo Stabilization using Hybrid of SIFT and SURF Algorithm
Video stabilization is an important enhancement techniques used to remove undesired motion in a video. The sphere of photo forensics is expanding hastily. Many passive photograph tamper detection techniques were presented techniques have been presented. Some of those techniques use characteristic extraction methods for tamper detection and localization. This work is based totally on extracting ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Image and Video Processing
دوره 2008 شماره
صفحات -
تاریخ انتشار 2008